统计学评价估计量的好坏的标准有哪些?
在实际工作中,总体参数往往是未知的,需要使用样本统计量来估计总体参数。衡量估计量优劣的标准一般有以下三个:
1、无偏性:无偏性不是要求估计量与总体参数不得有偏差,因为这是不可能的,既然是抽样,必然存在抽样误差,不可能与总体完全相同。无偏性指的是如果对这同一个总体反复多次抽样,则要求各个样本所得出的估计量(统计量)的平均值等于总体参数。符合这种要求的估计量被称为无偏估计量。
2、有效性:估计量与总体之间必然存在着一定的误差,衡量这个误差大小的一个指标就是方差,方差越小,估计量对总体的估计也就越准确,这个估计量也就越有效。
3、一致性:一致性指的是当样本量逐渐增加时,样本的估计量(统计量)能够逐渐逼近总体参数。
估计量分析:
当样本容量n充分大时,估计量可以以任意的精确程度逼近被估计参数的真值。按收敛意义不同,可以区分不同的相合性,常见的有:弱相合估计、强相合估计、r阶相合估计,这三种相合性之间的关系与三种收敛性的关系是完全一致的。相合性是一个估计量所应具备的最基本的性质。
一个估计量它依赖于样本n,为表明这种依赖性。随着样本量的变化,可得到一列估计量,一个自然的希望是,当样本容量无线增加时,估计量能够依某种意义接近于被估计量的真值。显然,这是对估计量的起码要求。相合性就是这样的一个要求。